SMARC SoM with Renesas RZ/V2N – High-Performance Vision AI & Edge Computing

blank

blank

  • Coming soon!
  • SMARC Module, 82x50mm
  • 4x ARM Cortex-A55 CPU, 1.8GHz
  • Multi-Camera & 4K Processing
  • AI accelerator DRP-AI (AI-MAC+DRP)
  • LPDDR4 4 GiB
  • ARM Cortex-M33 200MHz
  • Yocto, Linux, U-BOOT

The SMARC System-on-Module (SoM) with Renesas RZ/V2N is engineered for AI-powered vision applications, delivering high-performance image processing, deep learning acceleration, and real-time control in a compact, power-efficient form factor. Whether you’re developing smart cameras, industrial automation, robotics, or surveillance systems, this SoM accelerates your time to market with its powerful features and flexible design.

Form factor:

  • SMARC Module™ (Smart Mobility Architecture)
  • Size 82x50mm

CPU Renesas RZ/V2N:

  • 4x ARM Cortex-A55 CPU, 1.8GHz
  • Deep Learning Acceleration – DRP-AI (Dynamically Reconfigurable Processor) with 15 sparse TOPS and 4 dense TOPS for low-latency AI inference at the edge
  • ARM Cortex-M33 200MHz
  • H.264/H.265 codec module
  • Arm® Mali™ G31 3D GPU + Embedded 2D GPU
  • Image Signal Processor: Arm Mali-C55
  • Video codec unit

Memory

  • RAM: 4 GiB, LPDDR4 (optional: up to 8 GiB)
  • eMMC: 16 GiB (optional: up to 256 GiB)
  • SPI NOR Flash: 16 MiB

Display

  • MIPI-DSI 1920×1200, 60Hz

Camera

  • up to 2x MIPI-CSI (4-lane and 2-lane, 2.1Gbps/lane) with PHY
  • 4K RAW12 30 fps

Network

  • Gigabit Ethernet PHY Transceiver: 2x 10/100/1000Mbps

I/O

  • PCIe 2-lanes
  • 4x USB2.0 (with USB hub)
  • 1x USB3.2 Host
  • 4x UART ports
  • MMC/SD/SDIO
  • 2x SPI
  • 5x I2C
  • 2x CAN
  • GPIOs

Electrical specifications

  • Supply Voltage: 5.0V

Physical

  • Form factor: SMARC, 82x50mm
  • Operation temperature: 0° +70°C, -40° to 85° C (optional)
  • Relative humidity: 10% to 90%
  • MTTF > 200000 hours

Software

  • Yocto
  • Linux Kernel
  • U-BOOT

Carrier board

 

Resources

Documents:
📄 RNX-RZV2N-SMARC_Datasheet.pdf

Software:
📄 U-BOOT, Linux Kernel, YOCTO

Development Tools

WIKI

🔗 http://wiki.ronetix.at